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Abstract
In a previous contribution (Stöckmann H J 2002 J. Phys. A: Math. Gen.
35 5165), the density of states was calculated for a billiard with randomly
distributed delta-like scatterers, doubly averaged over the positions of the
impurities and the billiard shape. This result is now extended to the
k-point correlation function. Using supersymmetric methods, we show that
the correlations in the bulk are always identical to those of the Gaussian unitary
ensemble (GUE) of random matrices. In passing from the band centre to the
tail states, the density of states is depleted considerably and the two-point
correlation function shows a gradual change from the GUE behaviour to that
found for completely uncorrelated eigenvalues. This can be viewed as similar
to a mobility edge.

PACS numbers: 05.45.Mt, 03.65.Nk, 05.30.−d

1. Introduction

The theory of random matrices provides a schematic, but powerful statistical model for a
wide class of spectral problems in complex systems, for reviews see [1–3]. In particular,
there is overwhelming evidence for the fact that the spectral fluctuations of a quantum system
whose classical counterpart is fully chaotic are described by the Gaussian ensemble of random
matrices, i.e. by the Gaussian unitary ensemble (GUE) in the absence of time reversal invariance
and by the Gaussian orthogonal ensemble (GOE) if time reversal invariance holds and the
spectrum is free of Kramers degeneracies [4]. On the other hand, the fluctuation properties
for quantum systems whose classical counterparts are regular ought to be different, and often
of the Poisson type. Many systems show mixed fluctuation properties and transitions from
regular to chaotic behaviour.

Quantum billiards are ideal systems for the study of spectral fluctuation properties.
Billiards are said to be ballistic because the classical dynamics and the quantum spectra are
exclusively determined by the shape of the boundary. Whereas such ballistic systems are
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well understood, the situation is less clear for disordered systems. In particular, there
are many open questions concerning the localization–delocalization transition if disorder
is varied. From the one-parameter scaling hypothesis [5] it is generally accepted that in one-
and two-dimensional systems all states are localized, but analytic proofs exist only for one-
dimensional systems (see [6] for a review). There are a number of works using supersymmetric
techniques, where the change of the wavefunction amplitude statistic is studied with the
reciprocal conductance as a perturbation parameter [7], but up to now there is no closed
theory covering the full range from localized to delocalized wavefunctions. On the other hand
there are microwave experiments showing a clear localization–delocalization transition with
frequency [8, 9].

This was the motivation of a previous publication [10], hereafter denoted I, to tackle
the problem by an alternative approach. Instead of the usually applied nonlinear σ -model
the more explicit system of a billiard with randomly distributed scatterers was studied. This
approach generalized a model introduced by Bogomolny et al [11]. The average over disorder
was achieved with the help of a trick using the conjecture that a typical wavefunction can be
viewed as a random superposition of plane waves [12]. Thereby, no supersymmetric field
variables are needed which Efetov used to construct his nonlinear σ -model [13]. It avoids
as well the complications of diagrammatic expansions of Green functions and summations
of ladder diagrams [6]. It was already conjectured in I that there should be a localization–
delocalization transition with increasing number of scatterers. In the present work further
arguments are given that for a sufficiently large number of scatterers there is indeed a mobility
edge, separating the band from the tail states, where such a transition takes place. This effect
is accompanied by a considerable depletion of the density of states. There is a fundamental
difference to the σ -model which will be discussed.

The paper is organized as follows. In section 2 the main results of I are recapitulated
and the k-point correlation function is calculated generalizing a method developed in [15].
In section 3 the results are specialized to the strong coupling limit, and it is shown that
everywhere within the band random-matrix results are recovered. In section 4 the behaviour
of the k-point correlation close to the band edge is studied. The two-point correlation function
in particular shows a transition from GUE behaviour to that of completely uncorrelated
eigenvalues suggesting that there is indeed a mobility edge.

2. The model and its supersymmetric evaluation

We set up the model in section 2.1 and map it onto the superspace in section 2.2. The
kernel determining all correlation functions is calculated exactly in section 2.3. A Christoffel–
Darboux formula for the kernel is worked out in section 2.4.

2.1. Setup of the model

In I the density of states was calculated for a billiard with randomly distributed scatterers,
averaged over the positions of the scatterer. The system was described by the Hamiltonian

H = H0 + V (1)

where H0 is the operator of kinetic energy, and V is the scattering potential. Assuming L
point-like scatterers at positions �rl , we have

V (�r) = 4πλ

L∑
l=0

δ(�r − �rl). (2)
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Using standard supersymmetric techniques, the density of states was expressed as the
derivative

ρ(E) = 1

2π

d

dJ
Im〈Z(E + J,E − J )〉

∣∣∣∣
J=0

(3)

of the generating function

Z(E1, E2) =
∫

d[x] exp

i
∑
αβ

[(E1+δαβ − (H0)αβ)x∗
αxβ + (E2+δαβ − (H0)αβ)ξ ∗

α ξβ]

ML

(4)

with the volume element d[x] = ∏N
α=1 dx∗

α dxα dξ ∗
α dξα . Here, the quantity M is given by

M =
〈
exp

(
−4π iλ

∑
αβ

ψ∗
α(r)ψβ(r)(x∗

αxβ + ξ ∗
α ξβ)

)〉
(5)

where the brackets denote the average over the scatterer position. To perform the average,
in I a trick was applied by replacing the average over the positions by an integral over the
wavefunction amplitudes ψ at the positions of the scatterers with the amplitude probability
density p(ψ) as a weight function. For the latter a Gaussian distribution was taken typically
for chaotic billiards [12, 14]. In the next step, a second average was performed by replacing
the billiard spectrum with that of a random matrix from the GUE of rank N.

As a result, a simple analytic expression was obtained for the density of states. For
L > N a qualitative change in the density of states was observed suggesting a localization–
delocalization transition. In the following the results of I will be generalized to the calculation
of the k-point correlation function, and further evidence will be presented of the existence of
localized states and a certain type of mobility edge within the present model.

2.2. Supersymmetric matrix model

To compute the k-level correlation functions of k energies Ep, p = 1, . . . , k, we combine
and extend the procedures outlined in I and [15]. We construct the functions R̂k(E1, . . . , Ek)

obtained by averaging over the product of k Green functions, including their real parts. For
example, the density defined in equation (3) is the imaginary part of R̂1(E). The correlation
functions Rk(E1, . . . , Ek) for the imaginary parts only can be calculated as proper linear
combinations from the functions R̂k(E1, . . . , Ek). The latter are given as the derivatives

R̂k(E1, . . . , Ek) = 1

(2π)k

k∏
p=1

∂

∂Jp

〈Zk(E + J )〉
∣∣∣∣∣∣
J=0

(6)

of the generating function

〈Zk(E + J )〉 = 2k(k−1)

∫
d[S] exp

(
N

2π2
Tr S2 + Tr S(E + J )

)
Det NS

Det L(12k + λS)
(7)

with respect to k source variables Jp, p = 1, . . . , k. Energies and source variables are ordered
in diagonal matrices E = diag(E1, E1, . . . , Ek, Ek) and J = diag(−J1, +J1, . . . ,−Jk, +Jk).
The generating function (7) is the straightforward extension of the generating function used
in I to arbitrary k. To keep with the notation in I, we introduced the 2k × 2k Hermitian
supermatrix S which can be mapped onto the supermatrix σ used in [15] by exchanging its
bosonic and fermionic eigenvalues. Moreover, we use the symbols Tr and Det to indicate the
supertrace and superdeterminant.
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As in [15], the supersymmetric extension of the Itzykson–Zuber integral can be employed
to reduce the generating function to an integral over the fermionic and bosonic eigenvalues
isp2, p = 1, . . . , k and sp1, p = 1, . . . , k, respectively. This is so because the term coupling S
and E +J is the only one in the integrand which is not invariant under a unitary transformation
of S. Again, as in [15], an easy evaluation of the derivatives with respect to the source variables
is possible and we arrive at

R̂k(E1, . . . , Ek) = 1

(−π2)k

∫
d[s]Bk(s) exp

(
N

2π2
Tr s2 + Tr sE

)
Det Ns+

Det L(12k + λs)
. (8)

We collect the eigenvalues in the diagonal matrix s = diag(is12, . . . , isk2, s11, . . . , sk1). We
note that the bosonic eigenvalues carry a small imaginary increment, s+

p1 = sp1 + iη, where it
is necessary. It is sent to zero at an appropriate point of the calculation. Keeping this in mind,
we can integrate all eigenvalues over the entire real axis. This is equivalent to the choice of
the integration contour in I. The function

Bk(s) = det

[
1

sp1 − isq2

]
p,q=1,...,k

(9)

in equation (7) is the square root of the Jacobian which is due to the change of variables from
the Cartesian coordinates in S to eigenvalues s and angles. It is a determinant which couples
one bosonic and one fermionic eigenvalue in each of its elements. Expanding the determinant,

Bk(s) =
∑
π

ε(π)

k∏
l=1

1

spl − isqπ(l)

(10)

where the sum is over all permutations π , and ε(π) = ±1 for even, and odd permutations,
respectively, the integrations in equation (8) factorize into products of double integrals, each
over one bosonic and one fermionic variable. The result can again be written in terms of a
determinant

R̂k(E1, . . . , Ek) = det[ĈNL(Ep,Eq)]p,q=1,...,k (11)

with a kernel given by

ĈNL(Ep,Eq) = − 1

π2

∫ +∞

−∞

∫ +∞

−∞

ds1 ds2

s1 − is2

× exp

(
− N

2π2

(
s2

1 + s2
2

)
+ is2Eq − s1Ep

)(
1 + λs1

1 + λis2

)L (
is2

s+
1

)N

. (12)

We suppress the indices p and q in the integration variables. Thus, the correlation functions
have a determinant structure which is an immediate consequence of the determinant (9). In full
analogy with [15], we obtain the correlation functions Rk(E1, . . . , Ek) by replacing 1

/(
s+

1

)N

in equation (12) with its imaginary part Im 1
/(

s+
1

)N
. As in I, we rescale the energies and the

strength parameter according to

εp = π√
2N

Ep and α =
√

N/2

πλ
. (13)

On this scale, the correlation functions are given by

Rk(ε1, . . . , εk) = det[CNL(εp, εq)]p,q=1,...,k (14)
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where the kernel now reads

CNL(εp, εq) = − 1

π2

∫ +∞

−∞

∫ +∞

−∞

ds1 ds2

s1 − is2
exp

(−(
s2

1 + s2
2

)
+ 2is2εq − 2s1εp

)
×

(
α + s1

α + is2

)L

(is2)
N Im

1(
s+

1

)N
. (15)

Due to the rescaling (13), we obtain the kernel for the GUE correlation functions exactly in the
form given in [15], if we consider the limit λ → 0, i.e. α → ∞, or, equivalently, L = 0. We
note that the scaling factor in equation (13) is precisely the GUE mean level spacing π/

√
2N

in the centre of the semicircle.
In this derivation, we have omitted an Efetov–Wegner or a Rothstein contribution [13,

15–17] which adds to the real part of ĈNL(Ep,Eq). The functions CNL(Ep,Eq), the main
objects of our interest, are not affected.

2.3. Exact computation of the kernel

Extending the methods of [15], the kernel can be evaluated exactly for all values of N,L

and α. We define the functions

uNL(ε) = (−2i)NαL

√
π

∫ +∞

−∞
ds2 exp(−(s2 − iε)2)

sN
2

(α + is2)L

vNL(ε) = (−1)N+1N !

παL
exp(ε2)

∫ +∞

−∞
ds1 exp(−(s1 + ε)2)(α + s1)

LIm
1(

s+
1

)N+1

= (−1)N

αL
exp(ε2)

∂N

∂sN
1

exp(−(s1 + ε)2)(α + s1)
L

∣∣∣∣
s1=0

(16)

which reduce to the Hermite polynomials HN(ε) for L = 0 or, equivalently, for α → ∞. In
the appendix, some properties of these functions are compiled. We now express Im 1

/(
s+

1 )N

in equation (15) as ∂N−1δ(s1)/∂sN−1
1 and integrate by parts until the (N − 1)-fold derivative

with respect to s1 acts on all s1 dependent terms in the integrand. After applying Leibniz’ rule
for multiple derivatives of products, we can insert the second form of the function vNL(ε) into
equation (15). The s2 integration then yields just the function uNL(ε) and we arrive at

CNL(εp, εq) = 1√
π

exp
(−ε2

q

) N−1∑
n=0

1

2nn!
vnL(εp)unL(εq). (17)

Thus, we have expressed the kernel and all correlations in terms of the functions vNL(εp)

and uNL(εq). Formula (17) is a generalization of the corresponding expression for the GUE.
We mention in passing that one also derives

CNL(εp, εq) = (−1)N−1

2N−1(N − 1)!
√

π

∫ ∞

0
exp(−(εq + t)2)uNL(εq + t)v(N−1)L(εp + t) dt (18)

which again generalizes the corresponding expression for the GUE in [15]. The result (18)
involves only the orders N and N − 1 of the functions vNL(εp) and uNL(εq), which are not
even orthogonal.

2.4. A Christoffel–Darboux formula for CNL(εp, εq)

For L = 0 or, alternatively, α → ∞, the sum on the right-hand side of expression (17) can be
performed with the result
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CN0(εp, εq) = 1

2N−1(N − 1)!
√

π
exp

(−ε2
q

)u(N−1)0(εq)vN0(εp) − uN0(εq)v(N−1)0(εp)

εp − εq

.

(19)

This is the well-known Christoffel–Darboux formula for the Hermite polynomials. This
expression is now generalized to arbitrary values of L. To this end we multiply both sides
of equation (15) by εp − εq and obtain in a sequence of elementary steps, including one
integration by parts,

(εp − εq)CNL(εp, εq) = − 1

π2
Im

∫ +∞

−∞

∫ +∞

−∞

ds1 ds2

s1 − is2
(εp − εq)

× exp
(−(

s2
1 + s2

2

)
+ 2is2εq − 2s1εp

) ( α + s1

α + is2

)L (
is2

s+
1

)N

= − 1

π2
Im

∫ +∞

−∞

∫ +∞

−∞

ds1 ds2

s1 − is2

[
−1

2

(
∂

∂s1
+

1

i

∂

∂s2

)
exp(2is2εq − 2s1εp)

]

× exp
(−(

s2
1 + s2

2

)) ( α + s1

α + is2

)L (
is2

s+
1

)N

= − 1

π2
Im

∫ +∞

−∞

∫ +∞

−∞

ds1 ds2

s1 − is2
exp(2is2εq − 2s1εp)

×
[

1

2

(
∂

∂s1
+

1

i

∂

∂s2

)
exp

(−(
s2

1 + s2
2

)) ( α + s1

α + is2

)L (
is2

s+
1

)N
]

= − 1

π2
Im

∫ +∞

−∞

∫ +∞

−∞

ds1 ds2

s1 − is2

×
[

1

2

(
−2s1 + 2is2 +

L

α + s1
− L

α + is2
+

N

is2
− N

s+
1

)]

× exp
(−(

s2
1 + s2

2

)
+ 2is2εq − 2s1εp

) ( α + s1

α + is2

)L (
is2

s+
1

)N

= − 1

π2
Im

∫ +∞

−∞

∫ +∞

−∞
ds1 ds2

1

2

(
−2 − L

(α + s1)(α + is2)
+

N

is2s
+
1

)

× exp
(−(

s2
1 + s2

2

)
+ 2is2εq − 2s1εp

) ( α + s1

α + is2

)L (
is2

s+
1

)N

. (20)

The inconvenient denominator coupling the s1 and the s2 integrations has disappeared with the
consequence that all integrals can be expressed in terms of the uNL(ε) and vNL(ε). A formula
of the Christoffel–Darboux type is obtained,

(εp − εq)CNL(εp, εq) = 1

2N(N − 1)!
√

π
exp

(−ε2
q

)
×

[
−uNL(εq)v(N−1)L(εp) + u(N−1)L(εq)vNL(εp)

− L

2α2
uN(L+1)(εq)v(N−1)(L−1)(εp)

]
(21)

which is valid for all values of N,L and α. This is quite remarkable, because the
functions uNL(ε) and vNL(ε) are not orthogonal polynomials. In a different context, similar
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generalizations of the Christoffel–Darboux formula have been obtained in [21, 22] and by
Strahov and Fyodorov [18] in the calculation of correlation functions of ratios and products
of characteristic polynomials of Hermitian random matrices.

For L = 0 expression (19) for the Hermite polynomials is recovered. Another special
case is obtained for the strong coupling limit. Here the Gauss functions in the integral (15)
may be replaced by one with the consequence that the first term in the brackets on the right-
hand side of equation (21) is missing. Furthermore in this limit the uNL(ε) and vNL(ε) can be
expressed in terms of generalized Laguerre polynomials,

uNL(ε) = √
π exp(ε2)(−1)N(2α)(N+1) N !

(L − 1)!
exp(−z)zL−N−1L

(L−N−1)
N (z) (22)

vNL(ε) = (−1)NN !α−NL
(L−N)
N (z) (23)

where z = 2εα = E/λ as in I. Collecting the results we obtain from equation (21)

(εp − εq)CNL(εp, εq) = N !

(L − 1)
exp(−zq)z

L−N
q

×
[
−L

(L−N)
N−1 (zq)L

(L−N)
N (zp) + L

(L−N)
N (zq)L

(L−N)
N−1 (zp)

]
. (24)

Comparing equations (17) and (21) we obtain the following Christoffel–Darboux relation for
the generalized Laguerre polynomials:
N−1∑
n=0

n!xN−n−1L(L−n−1)
n (x)L(L−n)

n (y) = N !
L

(L−N)
N (x)L

(L−N)
N−1 (y) − L

(L−N)
N−1 (x)L

(L−N)
N (y)

y − x
.

(25)

This is not the Christoffel–Darboux relation for the Laguerre polynomials found in compilation
such as [19], but we cannot exclude that it is known in the mathematical literature.

3. Density of states and correlations via a saddlepoint approximation

In section 3.1, we work out the density of states in the strong coupling limit. The correlations
in the bulk of the spectrum are computed for arbitrary coupling in section 3.2.

3.1. Density of states in the strong coupling limit

For strong coupling λ � 1 or α 	 1 and L > N , the density of states was evaluated in I by
means of a WKB approximation to leading order in L > N � 1. Here we show that this is
equivalent to a saddlepoint approximation. For k = 1, we write the generating function (17)
in the form

〈Z1(ε + J )〉 =
∫

d[S] exp(L(S, ε + J ))

L(S, ε + J ) = Tr S2 + 2 Tr S(ε + J ) + N Tr ln S − L Tr ln(α + S).

(26)

We use the rescaled variables (13), drop the index 1 on the energy variable and write ε

shorthand for ε12. In the strong coupling limit S is of the order of α as can be seen by applying
the substitution S = αS ′. The term Tr S2 is thus of the order of α2 and may be dropped
in the Lagrangian L(S, ε + J ). In this approximation, the saddlepoint equation resulting from
the condition dL = 0 at J = 0 reads

2ε +
N

s0
− L

α + s0
= 0 (27)
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Figure 1. (a) Density of states in the strong coupling limit for L/N = 4. (b) Density of states in
the neighbourhood of the lower band edge (for details, see section 4.2).

with s0 standing for the two scalar saddlepoints s10 and is20. The solutions can be written as

s0 = 1

4ε

(
−(2εα − (L − N)) ∓ i

√
4LN − (2εα − (L − N))2

)
. (28)

Obviously, the imaginary part is only nonzero if the energy satisfies

ε− � ε � ε+ with ε∓ = 1

2α

(
L + N ∓ 2

√
LN

)
. (29)

We now expand the Lagrangian L(S, ε + J ) around the saddlepoints up to second order
and integrate out the massive modes in a Gaussian fashion. One can convince oneself in a
straightforward, but tedious, calculation that these Gaussian integrals converge as long as the
condition (29) holds. At the saddlepoints, the Lagrangian is simply 4s0J1 and we find from
equation (6)

R̂1(ε) = 2

π
s0

= 1

2πε

(
−(2εα − (L − N)) + i

√
4LN − (2εα − (L − N))2

)
. (30)

This is the full one-point function in the strong coupling limit. The imaginary part is the
density of states which is nonzero for ε− � ε � ε+. As expected, it coincides with the WKB
approximation of I. The saddlepoint approximation yields, in addition, also the real part of the
one-point function. As an illustration figure 1(a) shows the density of states calculated from
the imaginary part of R̂1(ε) for L/N = 4.

3.2. Correlations in the bulk of the spectrum

We take advantage of a remarkable identity which connects the kernel and the generating
function for k = 1,

ĈNL(εp, εq) = − 1

π(εp − εq)
〈Z1(E)〉

= − 1

π(εp − εq)

∫
d[S] exp(Tr S2 + Tr SE)

Det NS

Det L(α12 + S)
(31)

with E = diag(εp, εq). This identity which is easily derived with the supersymmetric extension
of the Itzykson–Zuber integral for k = 1 allows us to work out the correlations on the unfolded
scale by a saddlepoint approximation involving 2 × 2 supermatrices, i.e. in a simple Cartesian
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space. A similar procedure was employed in [20] in the context of chiral random-matrix
ensembles.

To begin with, we discuss the strong coupling limit of the previous section and turn to the
general case later. We write

E = εpq12 + D
rpq

2
 with εpq = εp + εq

2
and Drpq = εp − εq. (32)

Here, we introduced the metric  = diag(+1,−1) and, anticipating the steps to come, the
local mean level spacing D = 1/R1(εpq) which defines the unfolded scale. We use the form
(26) for the generating function with ε + J replaced by E to evaluate equation (31). In the
strong coupling limit, we neglect the term Tr S2. Although α 	 1 in this limit, we do not
make any assumption about its value in the present discussion. The saddlepoints are the
stable points of the integrand in an asymptotic 1/N expansion. The unfolded correlations live
on the local scale of the mean level spacing D. Thus, we have to keep rpq = (εp − εq)/D

fixed in the asymptotic expansion for the calculation of the unfolded correlations. The energy
difference εp −εq itself appears in the integrand. As it is given by Drpq , and as the mean level
spacing D vanishes in the limit N → ∞, the energy difference cannot yield a contribution
to the saddlepoints and we may neglect it when calculating them. Thus, we are left with
exactly the same problem as in the previous section, only ε is replaced by εpq . This implies
that the integrals over the massive modes converge in the nonzero region of the spectrum and,
moreover, that the only non-vanishing contribution to the correlations comes from the term
Tr SE in the Lagrangian. Collecting everything, we find

ĉNL(rpq, r̃pq) = lim
L>N→∞

DĈNL(εp, εq) = exp(πr̃pq)
exp(iπrpq)

πrpq

(33)

for the kernel on the unfolded scale. We note that the result depends on r̃pq = (εp−εq)R̃1(εpq)

where R̃1(εpq) = Re R̂1(εpq) is the real part of the one-point function. As discussed in [21],
an Efetov–Wegner or a Rothstein term has to be added to equation (33). It affects only the
real part and reads −1/πrpq . For the correlation functions involving the imaginary parts of
the Green functions, we only need the imaginary part

cNL(rpq, r̃pq) = Im ĉNL(rpq, r̃pq) = exp(πr̃pq)
sin πrpq

πrpq

(34)

which consists of the GUE sine kernel and an exponential function depending on r̃pq . Both
variables, r̃pq and rpq , are odd under the exchange of the indices p and q. Thus, the sine
kernel stays unchanged, while the exponential function acquires a sign in its argument. This
implies for the correlation function on the local scale

Xk(r12, r13, . . . , r(k−1)k) = lim
L>N→∞

DkRk(ε1, . . . , εk)

= det

[
sin πrpq

πrpq

]
p,q=1,...,k

(35)

which is identical to the standard GUE correlations.
The previous derivation is for the strong coupling limit. In the following, we present a

general discussion of the correlations. We write the kernel as the convolution

ĈNL(εp, εq) = 1

π

∫ +∞

−∞
dyp exp

(−y2
p

) ∫ +∞

−∞
dyq exp

(−y2
q

)
B̂NL(εp + yp, εq + iyq)

B̂NL(zp, zq) = − 1

π2

∫ +∞

−∞

∫ +∞

−∞

ds1 ds2

s1 − is2
exp

(−(
s2

1 + s2
2

)
+ i s2zq − s1zp

)
×

(
α + s1

α + is2

)L (
is2

s+
1

)N

.

(36)
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Obviously, the kernel B̂NL(zp, zq) is the kernel of the strong coupling limit. However, it
emerges due to the convolution. Thus, we do not need to assume that L > N . In the
following, we only assume that both numbers, L and N, are large. Moreover, we make no
assumption about α. As we have seen in the previous discussion, this kernel, here denoted by
B̂NL(zp, zq), leads to standard GUE correlations on the unfolded scale. One might argue that
this does not necessarily carry over to the present case, because the arguments zp = εp +yp and
zq = εq + iyq contain the integration variables yp and yq . However, as we are only interested
in the fluctuations, we only need to consider the integration variables on this scale. Thus, we
may neglect them for the determination of the saddlepoints. After assembling things properly,
we arrive at

ĉNL(rpq, r̃pq) = lim
N→∞

DĈNL(εp, εq)

= 1

π

∫ +∞

−∞
dyp exp

(−y2
p

) ∫ +∞

−∞
dyq exp

(−y2
q

)
× exp(π(r̃pq + (yp − iyq)R̃1(εpq)))

exp(iπ(rpq + (yp − iyq)/D))

π(rpq + (yp − iyq)/D)
. (37)

As we are only interested in the imaginary part, we may again ignore the Efetov–Wegner
or Rothstein term. The imaginary part can be obtained from the difference of a retarded
and an advanced Green function. The two Green functions yield the same kernels,
apart from a sign change in the argument of the exponential function in the numerator,
exp(±iπ(rpq + (yp − iyq)/D)). Hence, only the difference of these two exponential functions,
the sine function, enters. This is equivalent to taking the imaginary part of equation (37) while
formally ignoring the imaginary unit coming with the variable yq . Thus, we find

cNL(rpq, r̃pq) = Im ĉNL(rpq, r̃pq)

= 1

π

∫ +∞

−∞
dyp exp

(−y2
p

) ∫ +∞

−∞
dyq exp

(−y2
q

)
× exp(π(r̃pq + (yp − iyq)R̃1(εpq)))

sin(π(rpq + (yp − iyq)/D))

π(rpq + (yp − iyq)/D)

= exp(πr̃pq)
sin πrpq

πrpq

(38)

where the integrals over yp and yq were calculated as in [22]. Hence, the correlations are, once
more, of the standard GUE type. Some comments are in order. First, it should be clear that
the mean level spacing D in the above calculation was formally the one of the strong coupling
limit and has thus to be smoothly adjusted when going into another regime. Therefore, our
line of argument is correct only if we are always in the bulk of the spectrum, i.e. far away
from any possible edges or gaps. Second, the discussion beyond the strong coupling limit
could also be done in a saddlepoint approximation of the full expression (31). This, however,
leads to a most inconvenient third-order saddlepoint equation. In the approach chosen here
we avoid this and also gain the insight that the strong coupling limit and the general case are
related via a convolution. Third, we emphasize that the connection (31) between the kernel
and the generating function for k = 1 simplifies the calculations enormously: the saddlepoints
are isolated, no Goldstone modes occur. Furthermore, all correlations are treated at once.
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4. The band edges

From the pioneering work of Mott and Anderson it is known that in disordered systems there
are no sharp band edges for the density of states. There is a mobility edge instead separating
the delocalized states in the band from the localized ones in the tails. The mathematical origin
of the band edges is due to the fact that depending on some parameter the two solutions of
the saddle point equation (27) change from complex conjugate to real. This behaviour is
generic, though in the present model the band edges are only an artefact of the finite rank of
the matrices. It is therefore worthwhile to study the regime of the band edges somewhat more
in detail.

After obtaining a WKB approximation for the kernel in section 4.1, we work out density
of states and correlations in section 4.2.

4.1. A WKB approximation for CNL(εp, εq)

To keep the discussion simple, we again concentrate on the strong coupling limit. The starting
point is the Christoffel–Darboux relation (24) for CNL(εp, εq) holding in this limit. Using
standard relations for the generalized Laguerre polynomials, it can be written in the alternative
form

(εp − εq)CNL(εp, εq) = 2α
N !

(L − 1)
exp(−zq)z

L−N
q

×
[
L

(L−N−1)
N

′
(zq)L

(L−N−1)
N (zp) − L

(L−N−1)
N (zq)L

(L−N−1)
N

′
(zp)

]
(39)

where zp/q = 2αεp/q , which is somewhat more suitable for the present purpose. Following I,
we write L

(L−N−1)
N (z) as

L
(L−N−1)
N (z) =

√
(L − 1)!

N !
exp(z/2)z− L−N

2 f (z) (40)

where f (z) is a solution of

f ′′(z) + q2(z)f (z) = 0

q2(z) = N + L

2z
− 1

4
+

1 − (L − N − 1)2

4z2
.

(41)

q2(z) may be written as

q2(z) = − 1

4z2
(z − z−)(z − z+) (42)

where

z± = N + L ±
√

4NL + 2(L − N) ≈ N + L ± 2
√

NL. (43)

We note that this is the same expression, which was obtained above from the saddlepoint
approximation for the band edges in the strong coupling limit (see section 3.1).

For z− 	 z 	 z+ the WKB solution of equation (41) is given by

f (z) =
√

1

πq(z)
cos

[
Q(z) − π

4

]
(44)

where

Q(z) =
∫ z

z−
q(t) dt. (45)
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(To be concise we restrict the discussion to the neighbourhood of the lower edge, but it
is straightforward to transfer all results to the upper edge as well.) Inserting this into
equation (39), we recover the result for CNL(εp, εq) obtained in section 3.2 by means of
the saddlepoint technique. For z 	 z− the corresponding expression reads

f (z) = 1

2

√
1

π |q(z)| exp[−|Q(z)|]. (46)

Inserting expression (46) into (39) one notes that CNL(εp, εq) vanishes within the limits of the
WKB approximation applied. To describe this regime appropriately, one would have to go to
the next WKB order.

We do not proceed further in this direction, but concentrate on the immediate
neighbourhood of the lower edge which is not covered by equations (44) and (46). Linearizing
q(z) close to z−,

q(z) =
√

z+ − z−
4z2−

(z − z−) (47)

equation (41) can be solved with the result

f (z) = 1√
λ

Ai[λ(z−z)]

λ =
(√

z+ − z−
2z−

)2/3

=
(

(NL)1/4

N + L − 2
√

NL

)2/3 (48)

where Ai(z) is the Airy function. With the factor λ−1/2 the asymptotic behaviour of the
Laguerre polynomials is reproduced correctly by equation (40). This can be shown by
techniques described, e.g. in chapter 9.3 of [23]. Collecting the results, we obtain from
equation (39)

CNL(εp, εq) = 2α exp

(
−zq − zp

2

)(
zq

zp

)(L−N)/2

×
[
f ′(zq)f (zp) − f (zq)f

′(zp)

zp − zq

− (L − N)
f (zp)f (zq)

2zpzq

]
. (49)

The second term on the right-hand side vanishes for L → ∞, since zp, zq are of order
O(N + L), and will be discarded in the following. Essentially the same approach to describe
the behaviour of correlation functions close to the band edges was applied by Akemann and
Fyodorov [24] in the study of characteristic polynomials.

4.2. The density of states and the k-point correlation function

The density of states is obtained from equation (49),

ρ(ε) = CNL(ε, ε) = 2α{[f ′(2αε)]2 − f (2αε)f ′′(2αε)}. (50)

For the regime close to the lower band edge we obtain by inserting expression (48) for f (z),

ρ(ε) = 2αλ{[Ai′(−s)]2 + s[Ai(−s)]2} s = 2αλ(ε − ε−). (51)

Figure 1(b) shows a plot of the density of states in the transition regime as obtained from
equation (51).

From equation (14) the two-point correlation function results as

Rk(ε1, . . . , εk) = (2α)k det[cLN(εp, εq)]p,q=1,...,k (52)
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where

cLN(εp, εq) = f ′(zq)f (zp) − f (zq)f
′(zp)

zp − zq

. (53)

(The first factor on the right hand-side of equation (49) cancels in taking the determinant as is
easily seen.) Just as in section 3.2, we now introduce rescaled variables

εpq = εp + εq

2
Drpq = εp − εq (54)

and a rescaled correlation function Xk(r12, r13, . . . , r(k−1)k) = DkRk(ε1, . . . , εk), where
D−1 = ρ(ε) is the local density of states as given by equation (50). Note that in contrast to
section 3.2 we do not perform the limit L,N → ∞, since we are interested in particular in
the behaviour close to the band edges. We then have

Xk(r12, r13, . . . , r(k−1)k) = det[ĉLN(εpq, rpq)]p,q=1,...,k (55)

with

ĉLN(ε, r) = cLN

(
ε +

Dr

2
, ε − Dr

2

)
. (56)

Inserting for f (z) expression (48), we obtain for the regime close to the lower edge

ĉLN(ε, r) = Ai′(−s+)Ai(−s−) − Ai(−s+)Ai′(−s−)

r
(57)

where s± = s ± αλDr . In the limit r → 0 we obtain ĉLN(ε, 0) = 1 as should be. This is a
direct consequence of the differential equation Ai′′(z) − zAi(z) = 0 of the Airy function, and
equation (51). For r → ∞ ĉLN(ε, r) decays according to

ĉLN(ε, r) ∼ r−1/4 exp
[− 2

3 (αλDr)2/3
]

(58)

which follows from the asymptotic behaviour of the Airy function (see also equation (46)).
The transition between the two regimes is observed at r = s/αλD. With decreasing density
of states ρ(ε) = 1/D the transition point thus approaches r = 0, i.e. the eigenvalues become
more and more uncorrelated. This is illustrated in figure 2 where the two-point correlation
function R2(r) = 1 − [ĉLN(ε, r)]2 is shown for different values of s = 2αλ(ε − ε−) in the
neighbourhood of the lower band edge. In addition the GUE result is shown for comparison.
We observe with decreasing s a gradual transition from a GUE behaviour to that expected for
completely uncorrelated eigenvalues. This is exactly what is expected for a mobility edge:
within the band the eigenvalues experience a quadratic level repulsion typically for the GUE,
whereas in the tails the localization of the wavefunction leads to a suppression of the level
repulsion (see, e.g., [25]).

5. Summary and conclusion

In I the density of states for the billiard with randomly distributed scatterers was calculated,
doubly averaged over the disorder and shape of the billiard. We mention in passing that the
resulting model shows some formal similarities to chiral random-matrix models [26]. This
is due to the way how the average over the disorder is done. In the present work, the results
of I are extended. We calculate the k-point correlation functions exactly. The model of I
generalizes that of Bogomolny et al [11]. These authors considered a single scatterer in a
chaotic billiard and showed that the fluctuations are chaotic. In the present contribution,
we extend this study to arbitrarily many scatterers and also develop a completely different
technique to derive the correlations. Generalizing the approach of [15], the correlation
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Figure 2. Two-point correlation function R2(r) for different values of s = 2αλ(ε − ε−). For
comparison the GUE result is shown as well.

functions are expressed in terms of a determinant. This determinant structure of the correlation
functions is immediately obvious in the supersymmetric formulation of the model due to the
form of the Berezinian in eigenvalue angle coordinates. Moreover, an explicit Christoffel–
Darboux formula is given for the kernel entering the determinant.

By means of a saddlepoint approximation, we rederive the density of states in the strong
coupling limit and also find the real part of the one-point function. We show that the correlation
functions in the bulk of the spectrum on the scale of the local mean level spacing are, for all
couplings, of the GUE type.

Applying a WKB approximation to the kernel, the correlation functions are studied close
to the band edges in the strong coupling limit, where the number of scatterers is large and the
scattering potential is strong. The above-mentioned saddlepoint approximation is not valid in
this regime. Within the band the two-point correlation function shows a GUE behaviour, but
approaching the band edges and proceeding towards the band tails the eigenvalues become
more and more uncorrelated. This is exactly the fingerprint expected for a mobility edge
and a localization–delocalization transition. We note that a drastic depletion of the density of
states accompanies this transition. Thus, the localization–delocalization transition found in the
nonlinear σ -model [13] is of a different nature. In the latter, the average is over an ensemble
of white-noise correlated impurities, while two averages are performed in the present model,
one over the wavefunctions at the positions of the scatterers and another one over the billiard
spectrum. The resulting models are therefore different. There is a kinetic term in the nonlinear
σ -model and a diffusion constant in front of it. No analogy to this is present in the model
discussed here, because the average over the billiard spectrum takes care of the kinetic term.
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Appendix. Properties of the functions generalizing the Hermite polynomials

It is useful to define the functions

ϕNL(ε) = exp(−ε2/2)√
2NN !

√
π

uNL(ε)

ψNL(ε) = exp(−ε2/2)√
2NN !

√
π

vNL(ε)

(A.1)

which reduce to the oscillator wavefunctions for L = 0 or, equivalently, for α → ∞. We also
introduce the operators

A+ = d

dε
− ε and A− = d

dε
+ ε (A.2)

which act on the functions (A.1) according to

A+ϕNL(ε) = −
√

2(N + 1)ϕ(N+1)L(ε)

A−ϕNL(ε) = +
√

2Nϕ(N−1)L(ε) +
L

α
ϕN(L+1)(ε)

A+ψNL(ε) = −
√

2(N + 1)ψ(N+1)L(ε) − L

α
ψN(L−1)(ε)

A−ψNL(ε) = +
√

2Nψ(N−1)L(ε).

(A.3)

These results extend the formulae for the oscillator wavefunctions by terms involving a
change of the index L. We evaluate the action of the iterated operators A−A+ and A+A− using
equations (A.3), properly combine terms and arrive at the second-order differential equations(

d2

dε2
− ε2 + (2N + 1)

)
ϕNL(ε) = −L

α

√
2(N + 1)ϕ(N+1)(L+1)(ε)(

d2

dε2
− ε2 + (2N + 1)

)
ψNL(ε) = −L

α

√
2Nψ(N−1)(L−1)(ε).

(A.4)

These are not eigenvalue equations, because the functions on the left- and the right-hand
sides have different indices. However, one can cast them into diffusion-type equations by
introducing the fictitious time

τ = − ln α such that α = exp(−τ). (A.5)

A straightforward calculation yields the equations(
d2

dε2
− ε2 + (2N + 1)

)
ϕNL(ε) = −2

∂

∂τ
ϕNL(ε)(

d2

dε2
− ε2 + (2N + 1)

)
ψNL(ε) = +2

∂

∂τ
ψNL(ε)

(A.6)

which involve the same indices on both sides.
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References

[1] Mehta M L 1990 Random Matrices 2nd edn (San Diego, CA: Academic)
[2] Haake F 2001 Quantum Signatures of Chaos 2nd edn (Berlin: Springer)
[3] Guhr T, Müller-Groeling A and Weidenmüller H A 1998 Phys. Rep. 299 189
[4] Bohigas O, Gianonni M J and Schmit C 1984 Phys. Rev. Lett. 52 1
[5] Abrahams E, Anderson P, Licciardello D and Ramakrishnan T 1979 Phys. Rev. Lett. 42 673
[6] Kramer B and MacKinnon A 1993 Rep. Prog. Phys. 56 1469
[7] Mirlin A 2000 Phys. Rep. 326 259
[8] Kudrolli A, Kidambi V and Sridhar S 1995 Phys. Rev. Lett. 75 822
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